Abstract

Supramolecular structures have the potential to provide macromolecular behavior using relatively low molar mass building blocks. We present here data on the self-assembly of triblock rodcoil molecules which contain a rigid biphenyl ester segment covalently linked to structurally diverse oligomeric segments. These molecules form supramolecular aggregates with molar masses in the range 105−106 Da, and our experiments probe how supramolecular structure can be manipulated by varying the volume fraction of the coillike flexible segments with respect to that of rod segments. The oligostyrene−oligoisoprene diblock coils were synthesized via anionic polymerization and varied in average length from (6sty, 6iso) to (30sty, 30iso). Small-angle X-ray scattering scans revealed layer spacings corresponding to monolayers that increase in size as the coil's molar mass increases. We observed that an increase in coil volume fraction reduces the thermal stability of the supramolecular structure, but a corresponding increase...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.