Abstract

Cytoplasmic-genic male sterility (CMS) is used to produce hybrid onion (Allium cepa L.) seed. For the most widely used source of onion CMS, male sterility is conditioned by the interaction of the male-sterile (S) cytoplasm and the homozygous recessive genotype at a nuclear male-fertility restoration locus (Ms). Maintainer lines are used to seed propagate male-sterile lines, possess normal (N) male-fertile cytoplasm, and are homozyous recessive at the Ms locus. Due to the biennial nature of onion, it takes 4 to 8 years of crossing and scoring of progeny phenotypes to establish if maintainer lines can be extracted from an uncharacterized population or family. Identification of nuclear markers tightly linked to the Ms locus would allow for molecular-facilitated selection of maintainer lines. We evaluated testcross progenies from a segregating family for nuclear restoration of male fertility over at least three environments. Although segregations in the F2 family fit the expected 1:2:1 ratio (P = 0.973), the proportion of male-sterile testcross progenies showed significant (P < 0.01) year effects and it is therefore imperative to score male-fertility restoration over environments. Too many male-sterile testcross progenies were often observed, indicating that the dominant allele conditioning male-fertility restoration for S cytoplasm may not show complete penetrance. Segregations of amplified fragment length polymorphisms and restriction fragment length polymorphisms (RFLPs) revealed RFLPs flanking the Ms locus at 0.9 and 8.6 cM. An onion cDNA showing highly significant homology to the aldehyde dehydrogenase conditioned by the rf2 locus of maize was identified and mapped to linkage group I, independent of the Ms locus. A sample of commercial onion germplasm was evaluated for putative allelic diversity at the RFLP loci linked to Ms. The genomic region corresponding to the cDNA (AOB272) revealing the closest RFLP to Ms was sequenced to reveal numerous single nucleotide polymorphisms. Single-stranded conformational polymorphisms and single nucleotide extensions were developed that revealed genomic variation at AOB272-EcoRI. The use of these molecular markers to select maintainer lines in onion is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.