Abstract

Drought stress is a major limitation to bread wheat (Triticumaestivum L.) productivity and its yield stability in arid and semi-arid regions of world including parts of Israel and the U.S. Currently, breeding for sustained yields under drought stress is totally dependent on the use of yield and several key physiological attributes as selection indices. The attempt to identify the optimal genotype by evaluating the phenotype is undermining progress in such breeding programs. Osmotic adjustment (OA) is an effective drought resistance mechanism in many crop plants. Evidence exists that there is a genetic variation for OA in wheat and that high OA capacity supports wheat yields under drought stress. The major objective of this research was to identify molecular markers (RFLPs, restriction fragment length polymorphisms; and AFLPs, amplified fragment length polymorph isms) linked to OA as a major attribute of drought resistance in wheat and thus to facilitate marker-assisted selection for drought resistance. We identified high and low OA lines of wheat and from their cross developed recombinant inbred lines (RILs) used in the molecular tagging of OA in relation to drought resistance in terms of plant production under stress. The significant positive co-segregation of OA, plant water status and yield under stress in this RIL population provided strong support for the important role of OA as a drought resistance mechanism sustaining wheat production under drought stress. This evidence was obtained in addition to the initial study of parental materials for constructing this RIL population, which also gave evidence for a strong correlation between OA and grain yield under stress. This research therefore provides conclusive evidence on the important role of OA in sustaining wheat yield under drought stress. The measurement of OA is difficult and the selection for drought resistance by the phenotypic expression of OA is practically impossible. This research provided information on the genetic basis of OA in wheat in relations to yield under stress. It provided the basic information to indicate that molecular marker assisted selection for OA in wheat is possible. The RIL population has been created by a cross between two agronomic spring wheat lines and the high OA recombinants in this population presented very high OA values, not commonly observed in wheat. These recombinants are therefore an immediate valuable genetic recourse for breeding well-adapted drought resistant wheat in Texas and Israel. We feel that this work taken as a whole eliminate the few previous speculated . doubts about the practical role of OA as an important mechanism of drought resistance in economic crop plants. As such it should open the way, in terms of both concept and the use of marker assisted selection, for improving drought resistance in wheat by deploying high osmotic adjustment.  

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call