Abstract

The mechanism of resistance to tetracycline in Escherichia coli mediated by the Campylobacter jejuni-derived resistance determinant Tet(O) was investigated. The cloned Tet(O) protein had no detectable effect on the intracellular accumulation of tetracycline. The presence of Tet(O) markedly diminished the inhibitory effect of tetracycline on protein synthesis both in vivo and in vitro. Ribosomes prepared from tetracycline-resistant and susceptible E. coli cells bound almost identical amounts of radiolabeled tetracycline. Thus, a reduction in the binding of the antibiotic to its target site on the ribosome is not the primary mechanism of resistance. Poly(U)-directed polyphenylalanine synthesis revealed that an S-100 fraction prepared from tetracycline-resistant cells made the ribosomes prepared from susceptible cells considerably more resistant to the inhibitory action of tetracycline. The N-terminal portion (1 to 150 residues) of Tet(O) is highly homologous to the GTP-binding domain of elongation factor Tu and to elongation factor G, indicating that the Tet(O) protein has the potential to bind GTP. These data suggest that the Tet(O) protein could function either as a tetracycline-resistant analog of this elongation factor(s) or by modifying the target sites on the ribosomes in a catalytic fashion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.