Abstract

PurposeThe DNA methylation inhibitor 5-aza-2′-deoxycytidine (DAC) is approved for the treatment of myelodysplastic syndromes (MDS), but resistance to DAC develops during treatment and mechanisms of resistance remain unknown. Therefore, we investigated mechanisms of primary and secondary resistance to DAC in MDS.Patients and MethodsWe performed Quantitative Real-Time PCR to examine expression of genes related to DAC metabolism prior to therapy in 32 responders and non-responders with MDS as well as 14 patients who achieved a complete remission and subsequently relapsed while on therapy (secondary resistance). We then performed quantitative methylation analyses by bisulfite pyrosequencing of 10 genes as well as Methylated CpG Island Amplification Microarray (MCAM) analysis of global methylation in secondary resistance.ResultsMost genes showed no differences by response, but the CDA/DCK ratio was 3 fold higher in non-responders than responders (P<.05), suggesting that this could be a mechanism of primary resistance. There were no significant differences at relapse in DAC metabolism genes, and no DCK mutations were detected. Global methylation measured by the LINE1 assay was lower at relapse than at diagnosis (P<.05). On average, the methylation of 10 genes was lower at relapse (16.1%) compared to diagnosis (18.1%) (P<.05).MCAM analysis showed decreased methylation of an average of 4.5% (range 0.6%–9.7%) of the genes at relapse. By contrast, new cytogenetic changes were found in 20% of patients.ConclusionPharmacological mechanisms are involved in primary resistance to DAC, whereas hypomethylation does not prevent a relapse for patients with DAC treatment.

Highlights

  • The myelodysplastic syndrome (MDS) encompasses a diverse group of clonal hematopoietic disorders united by ineffective production of blood cells and varying risks of transformation to acute myelogenous leukemia (AML)

  • Most genes showed no differences by response, but the cytidine deaminase (CDA)/DCK ratio was 3 fold higher in non-responders than responders (P,.05), suggesting that this could be a mechanism of primary resistance

  • There were no significant differences at relapse in DAC metabolism genes, and no DCK mutations were detected

Read more

Summary

Introduction

The myelodysplastic syndrome (MDS) encompasses a diverse group of clonal hematopoietic disorders united by ineffective production of blood cells and varying risks of transformation to acute myelogenous leukemia (AML). Epigenetic deregulation plays an important role in the pathogenesis of MDS. Hypermethylation of CpG islands in the promoter of tumor-associated genes and their consequent silencing are important in the pathogenesis of MDS [2],[3]. Reversal of aberrant methylation leads to re-expression of silenced tumor suppressor genes and appears to be important in the response and prognosis of patients treated with DAC [4]. The prototypical DNA methyltransferase inhibitor 5-aza-29-deoxycytidine (decitabine, 5-aza-dC, DAC) and 5azacytidine (AZA) have been approved by the Food and Drug Administration (FDA) as antitumor agents for the treatment of MDS. Low-dose decitabine has been studied recently in multiple clinical trials and has been shown to be effective for treatment of MDS [4,5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call