Abstract

In this work, we report a theoretical study on molecular structure, vibrational spectra and nonlinear optical properties of orthoarsenic acid–tris-(hydroxymethyl)-aminomethane (OATA). The theoretical geometrical parameters in the ground state have been investigated by density functional method (B3LYP and BLYP) with 6-311G(d,p) basis set. The influence of intermolecular interactions effects on molecular properties has been considered by calculation performed on (OATA) dimer. The optimized geometric bond lengths and bond angles are in well agreement with the experimental data. As compared to theoretical frequencies of the monomer, the calculated values obtained for (OATA) dimer are in much better agreement with the experiment. All experimental vibrational bands have been discussed and assigned to normal modes on the basis of our theoretical calculations. B3LYP method has shown better fit to experimental ones than BLYP in calculation vibrational frequencies. To investigate nonlinear optical behaviour, the electric dipole moment μ, the polarizability α and the hyperpolarizability β were computed using DFT//B3LYP/6-311G(d,p) method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call