Abstract

The most relevant species of plutonium tricarbide were characterized using theoretical methods. The global minimum is predicted to be a fan structure where the plutonium atom is bonded to a quasi-linear C3 unit. A rhombic isomer, shown to be a bicyclic species with transannular C-C bonding, lies about 39 kJ/mol above the fan isomer. A linear PuCCC isomer and a three-membered ring CPuC2 isomer were found to be higher in energy (150 and 195 kJ/mol, respectively, above the predicted global minimum). The possible processes for the formation of these species are discussed, and the IR spectra were predicted to help in possible experimental detection. The nature of the Pu-C interaction has been analyzed in terms of a topological analysis of the electronic density, showing that Pu-C bonding is essentially ionic with a certain degree of covalent character.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call