Abstract

We present an inexpensive sodium molecular spectroscopy experiment for use in an advanced undergraduate laboratory course in physics or chemistry. The molecules were excited predominantly from the ground X1Σg+(v″ = 15) state to the B1Πu(v′ = 6) state using a commercially available 532-nm broadband diode laser. The laser-induced molecular fluorescence was measured using a miniature fiber-coupled spectrometer at a resolution of 0.5 nm. The spectral peak assignments were done by comparing the observed spectrum with the calculated Franck–Condon values. Important molecular constants such as fundamental frequency, anharmonicity, bond strength, and dissociation energy of the ground electronic state were determined by using the Birge–Sponer extrapolation method. The presence of highly visible blue glowing molecules along the green laser beam creates an engaging laboratory experience. Emphasis is placed on students developing their understanding of the molecular structure, practicing molecular spectroscopic techniques, and applying knowledge of light–matter interactions to a physical system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call