Abstract

Abstract Classical molecular dynamics were carried out in order to obtain insights into proper conditions to perform chemical fixation of carbon dioxide (CO2) with epoxide molecules into cyclic carbonates. Two different molecules containing epoxide groups were investigated: 1,2–Epoxybutane (EB), called linear aliphatic epoxide molecule, and 3-Ethyl-7-oxabicyclo(4.1.0)heptane (EC), called cycloaliphatic epoxide molecule. The reaction systems involving carbon dioxide additionally were catalyzed by tetraethylammonium bromide (TEAB). The dynamics of the molecular groups were studied by taking into account known reaction mechanisms to investigate whether the optimal reaction conditions were observed. Radial distribution functions and self-diffusion coefficients were calculated and revealed that in case of the systems with cycloaliphatic epoxide groups as reagent the CO2 molecules were located far away from the agglomerate formed by the dispersed tetraethylammonium bromide catalyst and epoxide groups (EC), and they do not present enough mobility to overcome the long distances to react. Additionally, it was observed that, in the case of the linear aliphatic epoxide groups (EB), the dynamics of the groups tends to facilitate the reaction mechanisms by presenting a considerable amount of available CO2 molecules in the neighborhood of the epoxy rings. Thus, via the Molecular Dynamics insights, the systems containing linear aliphatic epoxide groups presented a much more accessible condition for the subsequent reaction steps of the carbon dioxide fixation to occur as compared to systems containing cycloaliphatic epoxide groups. The simulation results are in agreement with the experimental findings, which showed via infrared spectroscopy the successful conversion of epoxy rings from linear aliphatic epoxide molecules into five-membered cyclic carbonates after reacting with carbon dioxide.

Highlights

  • Environmental issues and sustainability appeal have a strong impact on the development of novel chemistry approaches in order to synthesize materials via eco-friendly routes

  • This study reports a molecular dynamics (MD) investigation to gain insights into the dynamical behavior of the molecular systems and its influence on the formation of the aspired products

  • The discussion of the results will take into account the reaction mechanism and the resulting reaction steps reported in literature [7,18]

Read more

Summary

Introduction

Environmental issues and sustainability appeal have a strong impact on the development of novel chemistry approaches in order to synthesize materials via eco-friendly routes. The authors presented an efficient environmentally friendly synthesis of a bis(cyclic carbonate) poly (dimethylsiloxane) (CCPDMS) derivative via CO2 addition to yield precursor materials for the synthesis of innovative urethanes. R. de Aguiar and co-authors, the yield of the CO2 fixation is strongly dependent on the accessible reaction steps, the appropriate conditions and chemical structures of the components. The understanding of those phenomena is extremely relevant. In spite of the fact that calculations are scaled for short lengths and times, the quantum based methods, such as the DFT, provided important information on the mechanisms and the parameters which influence the reaction processes

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.