Abstract
The pressure- and temperature-induced polymorphic crystal phase transitions of p-terphenyl (PTP) have been modeled using a modified PCFF interaction force field. Modifications of the interaction potential were necessary to simultaneously model both the temperature-induced phase transition at ambient pressure and the pressure-induced phase transition at low temperature. Although the high-temperature and high-pressure phases are both characterized by flattening of the PTP molecule, the mechanisms of the temperature- and pressure-induced phase transitions are different. At high temperature thermal energy exceeds the torsional barrier, resulting in a bimodal phenyl ring twist angle distribution that averages to zero. In contrast, compression of PTP at high pressure results in a static planar structure. At high pressure the compression of the unit cell is also characterized by large compression of the a lattice parameter and weak compression of c, but some expansion of the b lattice parameter. The expansion of the b lattice parameter is likely associated with pressure-induced soft mode behavior of some lattice vibrations as well as soft mode behavior of pseudolocal phonons associated with impurities in PTP. The crystallographic angles α, β, and γ also indicate a triclinic crystal phase above the critical phase transition pressure of P(c) ~ 0.5 GPa at low temperature, suggesting a distinct phase separate from the monoclinic high-pressure phase at high temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.