Abstract

High-resolution infrared (IR) spectroscopy has been used to investigate the pressure-induced (0–11 kbar) polymorphic phase transition of crystalline para-terphenyl at low temperature (25 K). A number of doublet bands observed in low-pressure triclinic p-terphenyl were observed to coalesce in the high-pressure monoclinic phase. The coalescing of doublet bands was attributed to changes in factor group (Davydov) splittings associated with the transition from a low-pressure triclinic phase to a high-pressure monoclinic phase. The bands that ‘disappear’ also do not correlate with frequency changes associated with changes in molecular symmetry. Molecular dynamics (MD) simulations at low temperature (20 K) yield a non-planar average molecular structure for the high-pressure monoclinic phase, in contrast to the high-temperature monoclinic phase. The MD simulations also reveal a broadening of the distribution of ring torsion angles near the triclinic–monoclinic phase transition pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.