Abstract

Shale gas is a kind of unconventional oil-gas resource with tremendous potential. For thorough understanding of the methane adsorption and micromechanism in organic-matter nanopores of the shale and better acquaintances of the occurrence form, graphite slit-pores were set up as a representation of organic-matter nanopores by using Material Studio, and the grand canonical Monte Carlo method, molecular mechanics and molecular dynamics were used for the simulation of adsorption and diffusion behaviors in organic-matter pores on CH4 and CO2 at the shale gas common burial depth of 2–4 km in the Upper Yangtze Plate. The results indicated that the adsorptions of CH4 and CO2 were physical and the optimal storage depth was 2 km; The mixed adsorption data showed the rationality of exploit shale gas by injecting CO2 to exchange CH4, and the optimal burial depth was 4 km; The relative density of CH4 and CO2 along the normal direction of the pore inwall showed a trend of symmetric distribution and apparent adsorption stratifications appeared. As a whole, the self-diffusion coefficient of CH4 and CO2 increased with the increase of burial depth, and it's consistent with the reasons for such changes of adsorption amount and adsorption heat.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.