Abstract

BackgroundUnder the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth) during insect Brevicoryne brassicae (B. brassicae henceforth) and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth) attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria.ResultsThe obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments.ConclusionsDefence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between biotic stress and microRNAs in Arabidopsis and, thus gives indicates a new direction for conducting large-scale targeted experiments to explore the detailed regulatory links between them. The presented results provide a comparative understanding of Arabidopsis – B. brassicae and Arabidopsis – P. syringae interactions at the transcriptomic level.

Highlights

  • Plants are sessile organisms that are unable to escape biotic and abiotic stresses

  • The number of signalling proteins that were differentially expressed during the aphid experiment was more than four times higher compared to the P. syringae treatment

  • We generated and analysed data from two different biotic stress experiments conducted in Arabidopsis thaliana in which the plants were challenged with the aphid Brevicoryne brassicae and the bacterium P. syringae syringae

Read more

Summary

Introduction

Plants are sessile organisms that are unable to escape biotic and abiotic stresses. As a result, they have evolved flexibility in their responses to changing environmental conditions, such as light, drought, temperature, the available nutritional supply and biotic invasion. Some responses of host plants to different stress conditions are very general and provide protection from a variety of invading organisms, whereas others are more specific and target particular types of attackers. The development of microarray technology has allowed monitoring of expressional changes in thousands of genes simultaneously, and this technology has become a major tool for examining plant stress biology Most of these studies have adopted A. thaliana as a model plant organism because of the vast amount of genomic information made available for this species with the completion of the A. thaliana genome sequence and advanced annotation of A. thaliana genes [2]. Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.