Abstract

A series of generation 3-5 dendrons based on a bis(2,2-hydroxymethylpropionic acid) (bis-MPA) scaffold bearing three respective lengths of linear poly(ethylene glycol) at their periphery and a dibenzocyclooctyne unit at their core was prepared. These dendrons were appended to the surface of azide-decorated α-chymotrypsin (α-CT) via strain-promoted azide-alkyne cycloaddition to yield a library of dendron-protein conjugates. These conjugates were characterized by FT-IR and NMR spectroscopy and were imaged using cryo-electron microscopy. The activity of the PEGylated α-CT-dendron conjugates was investigated using a small molecule (benzoyl-l-tyrosine p-nitroanilide) as well as different proteins of different sizes and crystallinities (casein and bovine serum albumin) as substrates. It was found that the activity of the conjugates toward the small molecule was largely retained, while the activity toward the proteins was significantly diminished. Furthermore, the results indicate that for most of the conjugates the PEG length had a more pronounced impact on enzyme activity than the dendron generation. Overall, the highest sieving ratios were found for α-CT-dendron conjugates decorated with G3-PEG2000, G4-PEG2000, and G5-PEG1000, with the latter two structures offering the best combination of sieving ratio and small molecule activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.