Abstract
AbstractSoft porous coordination polymers (PCPs) have the remarkable ability to recognize similar molecules as a result of their structural dynamics. However, their guest‐induced gate‐opening behaviors often lead to issues with selectivity and separation efficiency, as co‐adsorption is nearly unavoidable. Herein, we report a strategy of a confined‐rotational shutter, in which the rotation of pyridyl rings within the confined nanospace of a halogen‐bonded coordination framework (NTU‐88) creates a maximum aperture of 4.4 Å, which is very close to the molecular size of propyne (C3H4: 4.4 Å), but smaller than that of propylene (C3H6: 5.4 Å). This has been evidenced by crystallographic analyses and modelling calculations. The NTU‐88o (open phase of activated NTU‐88) demonstrates dedicated C3H4 adsorption, and thereby leads to a sieving separation of C3H4/C3H6 under ambient conditions. The integrated nature of high uptake ratio, considerable capacity, scalable synthesis, and good stability make NTU‐88 a promising candidate for the feasible removal of C3H4 from C3H4/C3H6 mixtures. In principle, this strategy holds high potential for extension to soft families, making it a powerful tool for optimizing materials that can tackle challenging separations with no co‐adsorption, while retaining the crucial aspect of high capacity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have