Abstract
Depressing the competitive hydrogen evolution reaction (HER) to promote current efficiency toward carbon-based chemicals in the electrocatalytic CO2 reduction reaction (CO2RR) is desirable. A strategy is to apply the hydrophobically molecular-modified electrodes. However, the molecular-scale catalytic process remains poorly understood. Using alkanethiol-modified hydrophobic Cu as an electrode and CO2-saturated KHCO3 as an electrolyte, we reveal that H2O, rather than HCO3-, is the major H+ source for the HER, determined by differential electrochemical mass spectrometry with isotopic labeling. As a result, using in situ Raman, we find that the hydrophobic molecules screen the cathodic electric field effect on the reorientation of interfacial H2O to a "H-down" configuration toward Cu surfaces that corresponds to the decreased content of H-bonding-free water, leading to unfavorable H2O dissociation and thus decreased H+ source for the HER. Further, density functional theory calculations suggest that the absorbed alkanethiol molecules alter the electronic structure of Cu sites, thus decreasing the formation energy barrier of CO2RR intermediates, which consequently increases the CO2RR selectivity. This work provides a molecular-level understanding of improved CO2RR on hydrophobically molecule-modified catalysts and presents general references for catalytic systems having H2O-involved competitive HER.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.