Abstract

Herein, size-controllable molybdenum carbide nanoparticles (Mo2C NPs) encapsulated by N, P-codoped carbon shells which simultaneously wrapping on the surface of carbon nanotube (Mo2C@NPC/CNT) is synthesized through a molecular-scale cage-confinement pyrolysis route. Such confinement achieves a good coating and protection of Mo2C and the effective control over the size of Mo2C NPs ranging from 2.5 to 10 nm facilitates a rational investigation into their electrochemical sensor behavior at nanometer scales. The optimized structure consisting of Mo2C nanoparticles with size of ~5 nm showed an outstanding electrochemical response toward dopamine (DA) and acetaminophen (AC) with detection limits (S/N = 3) of 0.008 μM for AC and 0.01 μM for DA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.