Abstract

Drought is a severe environmental constraint to plant productivity. Being a multidimensional stress, it triggers a wide variety of plant responses ranging from physiological, biochemical to molecular levels. One of the inevitable consequences of drought stress is an increase in reactive oxygen species (ROS) production in different cellular compartments, namely the chloroplasts and mitochondria. This enhanced ROS production is, however, kept under tight control by a versatile and cooperative antioxidant system that modulates intracellular ROS content and sets the redoxstatus of the cell. Furthermore, ROS production under stresses functions as an alarm signal that triggers defence or acclimation. Specific signal transduction pathways involve, e.g., H2O2 as a secondary messenger. ROS signalling under drought is linked to abscisic acid (ABA) and Ca2+ fluxes. At molecular levels, several drought-responsive genes, transcription factors, aquaporins, late embryogenesis abundant proteins, heat shock proteins, and dehydrins have been identified. This review discusses recent understanding on molecular responses and protective mechanisms of drought stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.