Abstract

The negative-AND (NAND) gate is universal for classical computation making it an important target for development. A seminal quantum computing algorithm by Farhi, Goldstone and Gutmann has demonstrated its realization by means of quantum scattering yielding a quantum algorithm that evaluates the output faster than any classical algorithm. Here, we derive the NAND outputs analytically from scattering theory using a tight-binding (TB) model and show the restrictions on the TB parameters in order to still maintain the NAND gate function. We map the quantum NAND tree onto a conjugated molecular system, and compare the NAND output with non-equilibrium Green’s function transport calculations using density functional theory and TB Hamiltonians for the electronic structure. Further, we extend our molecular platform to show other classical gates that can be realized for quantum computing by scattering on graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.