Abstract
The dynamics of binary polymer blends of few labeled long chains in successively shorter matrix chains has been investigated by neutron spin echo (NSE) spectroscopy. For the first time the effect of constraint release on the chain relaxation has been directly observed on a microscopic scale. Decreasing the matrix chain length reduces the topological confinement until unconfined Rouse motion is observed, when the matrix chains are too short to confine the long chain in a tube. Whereas an analytical description of the effect is not yet available, a new simulation based on the slip-link model shows perfect agreement with the NSE data over the full range of matrix molecular weights.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.