Abstract

Semiconductor nanopillar arrays with radially doped junctions have been widely proposed as an attractive device architecture for cost effective and high efficiency solar cells. A challenge in the fabrication of three-dimensional nanopillar devices is the need for highly abrupt and conformal junctions along the radial axes. Here, a sulfur monolayer doping scheme is implemented to achieve conformal ultrashallow junctions with sub-10 nm depths and a high electrically active dopant concentration of 1019–1020 cm−3 in arrays of InP nanopillars. The enabled solar cells exhibit a respectable conversion efficiency of 8.1% and a short circuit current density of 25 mA/cm3. The work demonstrates the utility of well-established surface chemistry for fabrication of nonplanar junctions for complex devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call