Abstract

The interaction of proteoglycan monomers with hyaluronate in cartilage is mediated by a globular binding region at the N-terminus of the proteoglycan monomer; this interaction is stabilized by link protein. Sequences show that both the binding region (27% carbohydrate) and the link protein (6% carbohydrate) contain an immunoglobulin (Ig) fold domain and two proteoglycan tandem repeat (PTR) domains. Both proteins were investigated by neutron and synchrotron X-ray solution scattering, in which nonspecific aggregate formation was reduced by the use of citraconylation to modify surface lysine residues. The neutron and X-ray radius of gyration RG of native and citraconylated binding region is 5.1 nm, and the cross-sectional RG (RXS) is 1.9-2.0 nm. No neutron contrast dependence of the RG values was observed; however, a large contrast dependence was seen for the RXS values which is attributed to the high carbohydrate content of the binding region. The neutron RG for citraconylated link protein is 2.9 nm, its RXS is 0.8 nm, and these data are also independent of the neutron contrast. The scattering curves of binding region and link protein were modeled using small spheres. Both protein structures were defined initially by the representation of one domain by a crystal structure for a variable Ig fold and a fixed volume for the two PTR domains calculated from sequence data. The final models showed that the different dimensions and neutron contrast properties of binding region compared to link protein could be attributed to an extended glycosylated C-terminal peptide with extended carbohydrate structures in the binding region.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call