Abstract

The rapid development of the chemical industry and science, and new challenges in the healthcare sector, put forward increased demands for the development of the theory of organic and inorganic chemistry, for the search and implementation of new modeling and analysis methods, and for the improvement of technological processes. One of the main challenges at the intersection of chemistry, physics, biol- ogy, medicine, and genetics is the search for new methods and approaches to the diagnosis and treatment of cancer. A deeper understanding of cancer’s genetics and molecular biology has led to the identification of an increasing number of potential molecular targets that can be used for the discovery and development of anticancer drugs, radiation therapy, etc. One of the main places in this is occupied by molecular modeling. Despite the availability of more and more data on existing proteins and nucleic acids and the availability of modeling methods and tools, the development and use of a wide variety of combined methods and tools for modeling and computing large molecular systems remain an open issue. One of the possible solutions for this problem is the application of the algebraic approach and the corresponding formal methods, which have proven effective in many other fields today. The main idea of the research is the application of algebraic modeling technology and quantum chemical apparatus for modeling and verification of organic chemistry problems, in particular, modeling and analysis of radiation therapy problems. The paper presents the first steps of the research. The example of the formalization of the synchrotron operation principle and the example of the interaction of protons with substance in the example of the determination/calculation of the physically absorbed dose are given in the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call