Abstract

The adverse effects and therapeutic resistance development are among the most potent clinical issues for cancer treatment. The increase in genetic understanding and information relating to the molecular biology of cancer has resulted in the identification of numerous potential molecular targets for anticancer drug discovery and development. However, the complexities of cancer treatment and the extensive accessibility to experimental data have made computer-aided approaches necessary. The dynamic nature of protein structure makes it difficult to portray an accurate model for certain proteins. In the case where a 3D structure cannot be obtained by experimental methods, molecular modeling methods can be utilized to obtain the target protein's information, including atomic coordinates, secondary structure assignments, and atomic connectivity. Molecular modeling describes the generation, representation, and/or manipulation of the 3D structure of chemical and biological molecules, along with the determination of physicochemical and pharmacokinetic properties that can help to interpret the structure-activity relationship (SAR) of the biological molecules. This review paper aims to summarize approaches in molecular modeling and their applications in cancer research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call