Abstract

Poly(ethylene oxide) [PEO] ionomers are candidate materials for electrolytes in energy storage devices due to the ability of ether oxygen atoms to solvate cations. Copolyester ionomers are synthesized via condensation of sulfonated phthalates with glycol mixtures of PEO and poly(tetramethylene oxide) [PTMO] to create random copolymer ionomers with nearly identical ion content and systematically varying solvation ability. Variation of the PEO/PTMO composition leads to changes in Tg, dielectric constant and ionic aggregation; each with consequences for ion transport. Dielectric spectroscopy is used to determine number density of conducting ions, their mobility, and extent of aggregation. Conductivity and mobility display Vogel temperature dependence and increase with PEO content; despite the lower Tg of PTMO. Conducting ion densities show Arrhenius temperature dependence and are nearly identical for all copolymer ionomers that contain PEO. SAXS confirms the extent of aggregation, corroborates the temperatur...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call