Abstract

AbstractTo investigate the effects of polymer chemistry and topology on physical properties and bacterial adhesion, various hydrogels composed of short hydrophilic [poly(ethylene oxide) (PEO)] and hydrophobic blocks were synthesized by polycondensation reactions. Differential scanning calorimetry and X‐ray diffraction analysis confirmed that all of the hydrogels were strongly phase‐separated due to incompatibility between PEO and hydrophobic blocks such as poly(tetramethylene oxide) (PTMO) and poly(dimethyl siloxane) (PDMS). The crystallization of PEO in the hydrogels was enhanced by the incorporation of longer PEO chains, the adoption of PDMS as a hydrophobic block, and the grafting of monomethoxy poly(ethylene oxide) (MPEO). Compared to Pellethane, the control polymer, the hydrogels exhibited higher Young's moduli and elongations at break, which was attributed to the crystalline domains of PEO and the flexible characteristics of the hydrophobic blocks. The mechanical properties of the hydrogels, however, significantly deteriorated when they were hydrated in distilled water; this was primarily ascribed to the disappearance of PEO crystallity. The water capacity of hydrogels at 37°C in phosphate‐buffered saline (PBS) (pH = 7.4) was dominantly dependant on PEO content, which also influenced the thermonegative swelling behavior. From the bacterial adhesion tests, it was evident that both S. epidermidis and E. coli adhered to Pellethane much greater than to the hydrogels, regardless of the preadsorption of albumin. Better resistance to bacterial adhesion was observed in hydrogels with longer PEO chains, with PTMO as a hydrophobic block, and with MPEO grafts. The least bacterial adhesion for both species was achieved on MPEO2k–PTMO, a hydrogel with MPEO grafts. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1505–1514, 2003

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call