Abstract

Ramie (Boehmeria nivea [L.] Gaud.), a nutritious animal feed, is rich in protein and produces a variety of secondary metabolites that increase its palatability and functional composition. Ethylene (ETH) is an important plant hormone that regulates the growth and development of various crops. In this study, we investigated the impact of ETH sprays on the growth and metabolism of forage ramie. We explored the mechanism of ETH regulation on the growth and secondary metabolites of forage ramie using transcriptomic and metabolomic analyses. Spraying ramie with ETH elevated the contents of flavonoids and chlorogenic acid and decreased the lignin content in the leaves and stems. A total of 1076 differentially expressed genes (DEGs) and 51 differentially expressed metabolites (DEMs) were identified in the leaves, and 344 DEGs and 55 DEMs were identified in the stems. The DEGs that affect phenylpropanoid metabolism, including BGLU41, LCT, PER63, PER42, PER12, PER10, POD, BAHD1, SHT, and At4g26220 were significantly upregulated in the leaves. Ethylene sprays downregulated tyrosine and chlorogenic acid (3-O-caffeoylquinic acid) in the leaves, but lignin biosynthesis HCT genes, including ACT, BAHD1, and SHT, were up- and downregulated. These changes in expression may ultimately reduce lignin biosynthesis. In addition, the upregulation of caffeoyl CoA-O-methyltransferase (CCoAOMT) may have increased the abundance of its flavonoids. Ethylene significantly downregulated metabolites, affecting phenylpropanoid metabolism in the stems. The differential 4CL and HCT metabolites were downregulated, namely, phenylalanine and tyrosine. Additionally, ETH upregulated 2-hydroxycinnamic acid and the cinnamyl hydroxyl derivatives (caffeic acid and p-coumaric acid). Cinnamic acid is a crucial intermediate in the shikimic acid pathway, which serves as a precursor for the biosynthesis of flavonoids and lignin. The ETH-decreased gene expression and metabolite alteration reduced the lignin levels in the stem. Moreover, the HCT downregulation may explain the inhibited lignin biosynthesis to promote flavonoid biosynthesis. In conclusion, external ETH application can effectively reduce lignin contents and increase the secondary metabolites of ramie without affecting its growth and development. These results provide candidate genes for improving ramie and offer theoretical and practical guidance for cultivating ramie for forage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.