Abstract

BackgroundHIV-associated neurocognitive disorders (HAND) exist in approximately 50% of infected individuals even after the introduction of highly active antiretroviral therapy. HIV-1 Tat has been implicated in HIV-associated neurotoxicity mediated through production of pro-inflammatory cytokines like IL-6 and IL-8 by astrocytes among others as well as oxidative stress. However, the underlying mechanism(s) in the up-regulation of IL-6 and IL-8 are not clearly understood. The present study was designed to determine the mechanism(s) responsible for IL-6 and IL-8 up-regulation by HIV-1 Tat.MethodsSVG astrocytes were transiently transfected with a plasmid encoding HIV-1 Tat. The HIV-1 Tat-mediated mRNA and protein expression levels of both IL-6 and IL-8 in SVG astrocytes were quantified using real time RT-PCR and multiplex cytokine assay respectively. We also employed immunocytochemistry for staining of IL-6 and IL-8. The underlying signaling mechanism(s) were identified using pharmacological inhibitors and siRNA for different intermediate steps involved in PI3K/Akt, p38 MAPK and JNK MAPK pathways. Appropriate controls were used in the experiments and the effect of pharmacological antagonists and siRNA were observed on both mRNA expression and protein levels.ResultsBoth IL-6/IL-8 mRNA and protein showed peak expressions at 6 hours and 96 hours post-transfection, respectively. Elevated levels of IL-6/IL-8 were also confirmed by immunocytochemistry. Our studies indicated that both NF-kB and AP-1 transcription factors were involved in IL-6 and IL-8 expression mediated by HIV-1 Tat; however, AP-1 was differentially activated for either cytokine. In the case of IL-6, p38δ activated AP-1 whereas JNK but not p38 MAPK was involved in AP-1 activation for IL-8 production. On the other hand both PI3K/Akt and p38 MAPK (β subunit) were found to be involved in activation of NF-κB that led to IL-6 and IL-8 production.ConclusionOur results demonstrate HIV-1 Tat-mediated induction of both IL-6 and IL-8 in a time-dependent manner in SVG astrocytes. Furthermore, we also showed the involvement of NF-κB and AP-1 transcription factors regulated by PI3/Akt, p38 MAPK and JNK MAPK upstream signaling molecules. These results present new therapeutic targets that could be used in management of HAND.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-014-0214-3) contains supplementary material, which is available to authorized users.

Highlights

  • HIV-associated neurocognitive disorders (HAND) exist in approximately 50% of infected individuals even after the introduction of highly active antiretroviral therapy

  • The SVG astrocytes were transfected with a plasmid encoding HIV-1 HIV-1 trans activator of transcription (Tat) and the transfection efficiency was monitored by setting a parallel transfection with a plasmid encoding green florescent protein [27]

  • Statistical analyses was performed by one-way analysis of variance (ANOVA) and ** denotes P-value of ≤ 0.01

Read more

Summary

Introduction

HIV-associated neurocognitive disorders (HAND) exist in approximately 50% of infected individuals even after the introduction of highly active antiretroviral therapy. HIV-1 Tat has been implicated in HIV-associated neurotoxicity mediated through production of pro-inflammatory cytokines like IL-6 and IL-8 by astrocytes among others as well as oxidative stress. The present study was designed to determine the mechanism(s) responsible for IL-6 and IL-8 up-regulation by HIV-1 Tat. One of the hallmarks of neurodegeneration is inflammation in the central nervous system and dysregulation of cytokines and chemokines has been attributed to this process. Several pro-inflammatory cytokines, including IL-1β, IL-6, IL-8 and TNF-α have been implicated in neuroinflammation in a variety of neurodegenerative diseases including Alzheimer’s disease [1], Parkinson’s disease (PD) [2], multiple sclerosis [3] and HIV-associated neurocognitive disorders (HAND) [4]. While IL-6 and IL-8 have been extensively studied for their role in Alzheimer’s disease and PD, not much is known about the role of these cytokines in HAND.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.