Abstract
BackgroundAdverse events in early life can have impact lasting into adulthood. We investigated the long-term effects of systemic inflammation during postnatal development on adult microglial responses to lipopolysaccharide (LPS) in two CNS regions (cortex, cervical spinal cord) in male and female rats.MethodsInflammation was induced in Sprague-Dawley rats by LPS (1 mg/kg) administered intraperitoneally during postnatal development at P7, P12 or P18. As adults (12 weeks of age), the rats received a second LPS dose (1 mg/kg). Control rats received saline. Microglia were isolated 3 h post-LPS followed by gene expression analysis via qRT-PCR for pro-inflammatory (IL-6, iNOS, Ptgs2, C/EBPb, CD14, CXCL10), anti-inflammatory (CD68, Arg-1), and homeostatic genes (P2Y12, Tmemm119). CSF-1 and CX3CL1 mRNAs were analyzed in microglia-free homogenates.ResultsBasal gene expression in adult microglia was largely unaffected by postnatal inflammation. Adult cortical microglial pro-inflammatory gene responses to LPS were either unchanged or attenuated in rats exposed to LPS during postnatal development. Ptgs2, C/EBPb, CXCL10 and Arg-1 were the most affected genes, with expression significantly downregulated vs. rats without postnatal LPS. Spinal microglia were affected most by LPS at P18, with mixed and sometimes opposing effects on proinflammatory genes in males vs. females. Overall, male cortical vs. spinal microglia were more affected by postnatal LPS. Females were affected in both cortex and spinal cord, but the effect was dependent on timing of postnatal LPS. Overall, inflammatory challenge at P18 had greater effect on adult microglia vs. challenge at P12 or P7.ConclusionsLong-lasting effects of postnatal inflammation on adult microglia depend on postnatal timing, CNS region and sex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.