Abstract

Objective The molecular mechanism of secondary resistance in Luminal breast cancer was studied to provide new ideas for the treatment of breast cancer. Methods The sensitivity of the downregulation of myeloid leukemia factor 1-interacting proteins (MLF1IP) to Tamoxifen (TAM) was tested by the Cell Counting Kit-8 (CCK-8). The apoptosis of MLF1IP-mediated resistance was analyzed by flow cytometry (FCM) with/without TAM. Western blot was used in detecting various kinds of apoptosis and the expression of the protein related to the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway to study the molecular mechanism of secondary endocrine resistance in Luminal breast cancer. Results The downregulation of MLF1IP could significantly increase the drug sensitivity of Michigan Cancer Foundation-7 (MCF-7) cells and also inhibit the proliferation of MCF-7 cells under the stimulation of drugs. Western blot results showed that the expression of Bcl-2-associated X (BAX), Caspase3, Caspase7, and Caspase9 proteins increased when MLF1IP was downregulated. The results of the PI3K/AKT signaling pathway revealed that the phosphatase and tensin homolog deleted on chromosome ten (PTEN) protein expression of MCF7-shRNA was higher than that of MCF7-NC cells, while the expression of p-AKT was lower than that of MCF7-NC cells. Conclusions (1) MLF1IP-related apoptosis resistance plays an essential role in MLF1IP-mediated secondary resistance of breast cancer cells. (2) MLF1IP promotes AKT phosphorylation by inhibiting the PTEN expression, thus activating the PI3K/AKT signaling pathway and causing the secondary resistance of Luminal breast cancer. (3) MLF1IP can be used as a factor to predict the endocrine resistance of Luminal breast cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.