Abstract

Anthocyanins, flavonoid compounds derived from secondary metabolic pathways, play important roles in various biological processes. Phosphorus (P) is an essential macroelement for plant growth and development, and P-starvation usually results in anthocyanin accumulation. However, the molecular mechanism of P deficiency promotes anthocyanin biosynthesis has not been well characterized. Here, we provided evidence that the P signaling core protein PHOSPHATE STARVATION RESPONSE1 (PHR1) is physically associate with transcription factors (TFs) involved in anthocyanidin biosynthesis, including PRODUCTION OF ANTHOCYANIN PIGMENTS1 (PAP1/MYB75), MYB DOMAIN PROTEIN 113 (MYB113) and TRANSPARENT TESTA 8 (TT8). PHR1 and its homologies positively regulated anthocyanin accumulation in Arabidopsis seedlings under P-deficient conditions. Disruption of PHR1 simultaneously rendered seedlings hyposensitive to limiting P, whereas the overexpression of PHR1 enhanced P- deficiency-induced anthocyanin accumulation. Genetic analysis demonstrated that 35S:PHR1-2HA-5 seedlings partially recovers the P deficiency insensitive phenotype of myb-RNAi and tt8 mutants. In summary, our study indicated that protein complexes formed by PHR1 and MBW complex directly mediate the process of P-deficiency-induced anthocyanin accumulation, providing a new mechanistic understanding of how P-deficient signaling depends on the endogenous anthocyanin synthesis pathway to promote anthocyanin accumulation in Arabidopsis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.