Abstract

Anthocyanins, flavonoid compounds derived from secondary metabolic pathways, play important roles in various biological processes. Phosphorus (P) is an essential macroelement for plant growth and development, and P-starvation usually results in anthocyanin accumulation. However, the molecular mechanism of P deficiency promotes anthocyanin biosynthesis has not been well characterized. Here, we provided evidence that the P signaling core protein PHOSPHATE STARVATION RESPONSE1 (PHR1) is physically associate with transcription factors (TFs) involved in anthocyanidin biosynthesis, including PRODUCTION OF ANTHOCYANIN PIGMENTS1 (PAP1/MYB75), MYB DOMAIN PROTEIN 113 (MYB113) and TRANSPARENT TESTA 8 (TT8). PHR1 and its homologies positively regulated anthocyanin accumulation in Arabidopsis seedlings under P-deficient conditions. Disruption of PHR1 simultaneously rendered seedlings hyposensitive to limiting P, whereas the overexpression of PHR1 enhanced P- deficiency-induced anthocyanin accumulation. Genetic analysis demonstrated that 35S:PHR1-2HA-5 seedlings partially recovers the P deficiency insensitive phenotype of myb-RNAi and tt8 mutants. In summary, our study indicated that protein complexes formed by PHR1 and MBW complex directly mediate the process of P-deficiency-induced anthocyanin accumulation, providing a new mechanistic understanding of how P-deficient signaling depends on the endogenous anthocyanin synthesis pathway to promote anthocyanin accumulation in Arabidopsis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call