Abstract

Anthocyanin accumulation is a marked phenotype of plants under environmental stresses. PHYTOCHROME-INTERACTING FACTORs (PIFs) are involved in environment-induced anthocyanin biosynthesis through interacting with the MYB-bHLH-WD40 (MBW) complex. However, the molecular mechanism of this interaction remains unclear. The present study demonstrated that PIF3 and PIF5 can slightly repress anthocyanin accumulation under NaCl, low nitrogen (-N), or 6-BA treatments; in contrast, PIF4 can significantly repress anthocyanin accumulation. Bimolecular fluorescence complementation and yeast two-hybrid assays showed that PIF4 directly interacts with PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1), a MYB transcription factor in the MBW complex. Further analysis revealed that the active phytochrome binding (APB) domain in the N terminus of PIF4 is necessary for the interaction between PIF4 and PAP1. Yeast three-hybrid analysis showed that PIF4 competes with TRANSPARENT TESTA 8 (TT8) to bind PAP1, thereby interfering with the regulation of the MBW protein complex in anthocyanin synthesis. Consistently, the anthocyanin content in pap1-D/35S::PIF4 and 35S::PAP1/35S::PIF4 seedlings was markedly lower than that in pap1-D and 35S::PAP1 under 6-BA, MeJA, –N, and NaCl stresses, implying that overexpression of PIF4 suppresses anthocyanin accumulation in pap1-D and 35S::PAP1. Thus, PIF4 is genetically epistatic to PAP1. Taken together, PIF4 plays a negative role in modulating anthocyanin biosynthesis in Arabidopsis under different stress environments, and PIF4 interacts with PAP1 to affect the integrity of the MBW complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call