Abstract
Ferredoxin-NADP+ reductase (FNR) in plants receives electrons from ferredoxin (Fd) and converts NADP+ to NADPH at the end of the photosynthetic electron transfer chain. We previously showed that the interaction between FNR and Fd was weakened by the allosteric binding of NADP(H) on FNR, which was considered as a part of negative cooperativity. In this study, we investigated the molecular mechanism of this phenomenon using maize FNR and Fd, as the three-dimensional structure of this Fd:FNR complex is available. NMR chemical shift perturbation analysis identified a site (Asp60) on Fd molecule which was selectively affected by NADP(H) binding on FNR. Asp60 of Fd forms a salt bridge with Lys33 of FNR in the complex. Site-specific mutants of FdD60 and FNRK33 suppressed the negative cooperativity (downregulation of the interaction between FNR and Fd by NADPH), indicating that a salt bridge between FdD60 and FNRK33 is involved in this negative cooperativity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.