Abstract
It is shown that the modulation in the negative cooperativity of ligand binding by another, competing ligand that binds noncooperatively is accounted for exclusively by the ligand-induced sequential model. It is therefore suggested that whenever such a phenomenon is observed it argues strongly in favor of the sequential model. The advantages and limitations of this approach are evaluated. The binding of the coenzymes NAD+ and nicotinamide-1-N6-ethenoadenine dinucleotide to rabbit muscle apo-glyceraldehyde-3-phosphate dehydrogenase [D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating; EC 1.2.1.12] exhibits strong negative cooperativity, whereas acetylpyridine adenine dinucleotide, ATP, and ADP-ribose bind noncooperatively to the NAD+ sites. The strong abolished in the presence of acetylpyridine adenine dinucleotide and strongly weakened by ATP, ADP, and AMP, but was not affected by addition of ADP-ribose. These findings demonstrate that the negative cooperativity in coenzyme binding to this enzyme results from sequential conformational changes and exclude the pre-existent asymmetry model as a possible explanation. These results also support the view that the structure of the pyridine moiety of the coenzyme analogs plays a role in orienting the adenine moiety at the adenine subsite, therefore affecting the cooperativity in the binding of the coenzyme analog which is mediated through the adenine subsites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.