Abstract
During mitosis, the condensin I and II complexes compact chromatin into chromosomes. Loss of the chromokinesin, KIF4A, results in reduced condensin I association with chromosomes, but the molecular mechanism behind this phenotype is unknown. In this study, we reveal that KIF4A binds directly to the human condensin I HAWK subunit, NCAPG, via a conserved disordered short linear motif (SLiM) located in its C-terminal tail. KIF4A competes for NCAPG binding to an overlapping site with SLiMs at the N-terminus of NCAPH and the C-terminus of NCAPD2, which mediate two auto-inhibitory interactions within condensin I. Consistently, the KIF4A SLiM peptide alone is sufficient to stimulate ATPase and DNA loop extrusion activities of condensin I. We identify similar SLiMs in the known yeast condensin interactors, Sgo1 and Lrs4, which bind yeast condensin subunit, Ycg1, the equivalent HAWK to NCAPG. Our findings, together with previous work on condensin II and cohesin, demonstrate that SLiM binding to the NCAPG-equivalent HAWK subunit is a conserved mechanism of regulation in SMC complexes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.