Abstract

Background and objectivesDoxorubicin is a common apoptotic chemotherapeutic which has shown an obvious inhibitory effect in cancer chemotherapy. Here, cucurbit[n]urils (n = 7,10) have been proposed as a doxorubicin carrier, and the effects of diameter, protonation on loading and releasing of the anticancer drug doxorubicin has been studied. MethodsThe Density Functional Theory (DFT) calculation and Molecular Dynamics (MD) simulation are performed to study the adsorption process of the (guest) Doxorubicin molecule in the neutral and protonated states within the (host) cucurbit[n]urils (n = 7,10). ResultsDFT results show that the adsorption process in water is thermodynamically favorable. It is found that the binding energies for protonated drug encapsulation in cucurbit[n]urils are weaker than those of the neutral drug, implying the protonation of doxorubicin can promote the drug release from the adsorption situation. The electron density values and their Laplacian are evaluated to identify the nature of the intermolecular interactions through the topological parameters using the Bader's theory of atoms in molecules. Furthermore, the natural bond orbital analysis shows that the electrons aretransferred from cucurbit[n]urils to drug in all complexes. MD simulation results indicate that value of drug diffusion coefficient is small, therefore, we expect DOX to be slowly released from the CB cavity. ConclusionsBased on obtained results, cucurbit[n]urils may be a prominent nano-carrier to loading and release drug on to target cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.