Abstract

Self-compatible cultivars of Japanese apricot (Prunus mume Sieb. et Zucc.) have a horticultural advantage over self-incompatible ones because no pollinizer is required. Self-incompatibility is gametophytic, as in other Prunus species. We searched for molecular markers to identify self-compatible cultivars based on the information about S-ribonucleases (S-RNases) of other Prunus species. Total DNA isolated from five self-incompatible and six self-compatible cultivars were PCR-amplified by oligonucleotide primers designed from conserved regions of Prunus S-RNases. Self-compatible cultivars exhibited a common band of ≈1.5 kbp. Self-compatible cultivars also showed a common band of ≈12.1 kbp when genomic DNA digested with HindIII was probed with the cDNA encoding S2-RNase of sweet cherry (Prunus avium L.). These results suggest that self-compatible cultivars of Japanese apricot have a common S-RNase allele that can be used as a molecular marker for self-compatibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.