Abstract

Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe; HG) is one of the most destructive pests of soybean (Glycine max (L.) Merr.) in the United States. Over 100 SCN-resistant accessions within the USDA Soybean Germplasm Collection have been identified, but little is known about the genetic diversity of this SCN-resistant germplasm. The objective of this research was to evaluate the genetic variation and determine the genetic relationships among SCN-resistant accessions. One hundred twenty-two genotypes were evaluated by 85 simple sequence repeat (SSR) markers from 20 linkage groups. Non-hierarchical (VARCLUS) and hierarchical (Ward's) clustering were combined with multidimensional scaling (MDS) to determine relationships among tested lines. The 85 SSR markers produced 566 allelic fragments with a mean polymorphic information content (PIC) value of 0.35. The 122 lines were grouped into 7 clusters by 2 different clustering methods and the MDS results consistently corresponded to the assigned clusters. Assigned clusters were dominated by genotypes that possess one or more unique SCN resistance genes and were associated with geographical origins. The results of analysis of molecular variance (AMOVA) showed that the variation differences among clusters and individual lines were significant, but the differences among individuals within clusters were not significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call