Abstract
Molecular layer deposition (MLD) offers the deposition of ultrathin and conformal organic or hybrid films which have a wide range of applications. However, some critical potential applications require a very specific set of properties. For application as desiccant layers in water barrier films, for example, the films need to exhibit water uptake and swelling and be overcoatable. For application as a backbone for a solid composite electrolyte for lithium ions on the other hand, the films need to be stable against lithium and need to be transformable from a hybrid MLD film to a porous metal oxide film. Magnesium-based MLD films, called magnesicone, are promising on both these aspects, and thus, an MLD process is developed using Mg(MeCp)(2) as a metal source and ethylene glycol (EG) or glycerol (GL) as organic reactants. Saturated growth could be achieved at 2 to 3 angstrom/cycle in a wide temperature window from 100 to 250 degrees C. The resulting magnesicone films react with ambient air and exhibit water uptake, which is in the case of the GL-based films associated with swelling (up to 10%) and in the case of EG-based magnesicone with Mg(CO)(3) formation, and are overcoatable with an ALD of Al2O3. Furthermore, by carefully tuning the annealing rate, the EG-grown films can be made porous at 350 degrees C. Hence, these functional tests demonstrate the potential of magnesicone films as reactive barrier layers and as the porous backbone of lithium ion composite solid electrolytes, making it a promising material for future applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.