Abstract
In this study, molecular layer deposition (MLD) was used to deposit ultrathin films of methylene-bridged silicon oxycarbide (SiOC) using bis(trichlorosilyl)methane and water as precursors at room temperature. By utilizing bifunctional trichlorosilane precursors, films of SiOC can be deposited in a layer-by-layer manner, wherein a water co-reactant circumvents the need for plasma, high temperatures, or highly oxidizing precursors. In this manner, films could be grown without the degradation commonly seen in other SiOC deposition methods. Saturation behavior for both precursors was confirmed for the MLD process, and a constant growth rate of 0.5 ± 0.1 Å/cycle was determined. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy were used to verify the reaction between precursors and to gain insight into the final film composition. Unlike most MLD films, which grow polymers in a linear fashion, XPS analysis indicates that neighboring silanol groups within the films tend to condense, forming a highly cross-linked network structure, whereby, on average, two-thirds of silanol groups undergo a condensation reaction. Further indication of cross-linking is seen by XPS during in situ annealing, which shows exceptional temperature stability of the film up to 600 °C in vacuum, in contrast to linear SiOC films, which are known to degrade below this temperature. The films also exhibit high chemical stability against acids, bases, and solvents. A film density of 1.4 g/cm3 was measured by X-ray reflectivity, while the dielectric constant and refractive index were determined to be 2.6 ± 0.3 and 1.6 ± 0.1, respectively, at a 633 nm wavelength. The low dielectric constant, high ease of deposition, and exceptional thermal and chemical stabilities of this MLD SiOC film suggest that it may have potential applications for electronic devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have