Abstract

The interaction between cuminaldehyde and starch mainly governed the effect of further handling on food applications of cuminaldehyde. However, little information is available about the interactions of these components. We utilized relaxation and heteronuclear correlation (HETCOR) solid-state NMR spectroscopy to investigate the interaction between cuminaldehyde and porous starch at molecular level. We found that the interactions occurred mainly through hydrogen bonds. Cuminaldehyde molecules were restricted by starch, which resulted in the limitation of their movements and the longer 1H T1 relaxation time. Furthermore, the well resolved correlated peaks in 2D 1H-13C HETCOR spectrum confirmed the formation of hydrogen bonds. The oxygen atoms at hydroxyl-2,3 of starch were the binding sites, which combined with hydrogens of cuminaldehyde. This present work not only afford a new approach to obtain a molecular understanding of interactions, but also expanded the application of solid-state NMR to investigation of the interaction on functional components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call