Abstract
Accurate molecular imaging via high-order harmonic generation relies on comparing harmonic emission from a laser-irradiated molecule and an adequate reference system. However, an ideal reference atom with the same ionization properties as the molecule is not always available. We show that for suitably designed, very short laser pulses, a one-to-one mapping from high-order harmonic frequencies to electron momenta in above-threshold ionization exists. Comparing molecular and atomic momentum distributions then provides the electron recollision amplitude in the molecule for enhanced molecular imaging. The method retrieves the molecular recombination transition moments highly accurately, even with suboptimal reference atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.