Abstract

We have developed ethylenedicysteine-glucosamine (ECG) as an alternative to 18F-fluoro-2-deoxy-D-glucose (18F-FDG) for cancer imaging. ECG localizes in the nuclear components of cells via the hexosamine biosynthetic pathway. This study was to evaluate the feasibility of imaging mesothelioma with 99mTc-ECG and 68Ga-ECG. ECG was synthesized from thiazolidine-4-carboxylic acid and 1,3,4,6-tetra-O-acetyl-2-amino-D-glucopyranose, followed by reduction in sodium and liquid ammonia to yield ECG (52%). ECG was chelated with 99mTc/tin (II) and 68Ga/69Ga chloride for in vitro and in vivo studies in mesothelioma. The highest tumor uptake of 99mTc-ECG is 0.47 at 30 min post injection, and declined to 0.08 at 240 min post injection. Tumor uptake (%ID/g), tumor/lung, tumor/blood, and tumor/muscle count density ratios for 99mTc-ECG (30–240 min) were 0.47 ± 0.06 to 0.08 ± 0.01; 0.71 ± 0.07 to 0.85 ± 0.04; 0.47 ± 0.03 to 0.51 ± 0.01, and 3.49 ± 0.24 to 5.06 ± 0.25; for 68Ga-ECG (15–60 min) were 0.70 ± 0.06 to 0.92 ± 0.08; 0.64 ± 0.05 to 1.15 ± 0.08; 0.42 ± 0.03 to 0.67 ± 0.07, and 3.84 ± 0.52 to 7.00 ± 1.42; for 18F-FDG (30–180 min) were 1.86 ± 0.22 to 1.38 ± 0.35; 3.18 ± 0.44 to 2.92 ± 0.34, 4.19 ± 0.44 to 19.41 ± 2.05 and 5.75 ± 2.55 to 3.33 ± 0.65, respectively. Tumor could be clearly visualized with 99mTc-ECG and 68Ga-ECG in mesothelioma-bearing rats. 99mTc-ECG and 68Ga-ECG showed increased uptake in mesothelioma, suggesting they may be useful in diagnosing mesothelioma and also monitoring therapeutic response.

Highlights

  • Drug discovery is accelerating due to mapping of molecular targets and the rapid synthesis of high-throughput in vitro testing of compounds in their early stage of the drug development process

  • The development of radiolabeled biochemical compounds, understanding molecular pathways and imaging devices to detect the radioactivity by external imaging, has expanded the use of nuclear molecular imaging studies in drug development

  • Nuclear magnetic resonance (NMR) was performed on Bruker 300 MHz Spectrometer, and mass spectra were performed on Waters Q-TOF Ultima Mass Spectrometer (Milford, MA) at the core facility at the University of Texas MD Anderson Cancer Center (UTMDACC, Houston, TX)

Read more

Summary

Introduction

Drug discovery is accelerating due to mapping of molecular targets and the rapid synthesis of high-throughput in vitro testing of compounds in their early stage of the drug development process. The important applications in molecular imaging in oncology are at the characterization of tumors (degree of malignancy), optimal dosing determination, differentiation (i.e., inflammation/infection versus recurrence, sensitive versus resistant, low versus high grade), and prediction of treatment response (i.e., select patient who may respond to therapy). The focus of molecular imaging in oncology is to identify tumor-specific markers and apply these markers for evaluation of patient response to treatment. EC-technology platform has shown to coordinate radiometals and metals for image-guided target assessment, theranostic applications, and the selection of patient for treatment [7,8,9,10,11,12,13,14,15,16,17,18,19]. EC-glucosamine (ECG), a glucose analogue, is developed to trace the glucose transport system and glucosamine binding sites in mesothelioma. 99mTc-ECG and 68Ga-ECG may assess the staging, restaging, and response monitoring in mesothelioma for early and right medication of this disease

Materials and Methods
Step 1
Step 2
Result
Findings
Discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.