Abstract

The transition metal frustrated Lewis pair compounds [(Cym)M(κ3S,P,N-HL1)][SbF6] (Cym = η6-p-MeC6H4iPr; H2L1 = N-(p-tolyl)-N'-(2-diphenylphosphanoethyl)thiourea; M = Ru (5), Os (6)) have been prepared from the corresponding dimer [{(Cym)MCl}2(μ-Cl)2] and H2L1 by successive chloride abstraction with NaSbF6 and AgSbF6 and NH deprotonation with NaHCO3. Complexes 5 and 6 and the previously reported phosphano-guanidino compounds [(Cym)M(κ3P,N,N'-HL2)][SbF6] [H2L2 = N,N'-bis(p-tolyl)-N''-(2-diphenylphosphanoethyl) guanidine; M = Ru (7), Os (8)] and pyridinyl-guanidino compounds [(Cym)M(κ3N,N',N''-HL3)][SbF6] [H2L3 = N,N'-bis(p-tolyl)-N''-(2-pyridinylmethyl) guanidine; M = Ru (9), Os (10)] heterolytically activate H2 in a reversible manner affording the hydrido complexes [(Cym)MH(H2L)][SbF6] (H2L = H2L1; M = Ru (11), Os (12); H2L = H2L2; M = Ru (13), Os (14); H2L = H2L3; M = Ru (15), Os (16)). DFT calculations carried out on the hydrogenation of complex 7 support an FLP mechanism for the process. Heating 9 and 10 in methanol yields the orthometalated complexes [(Cym)M(κ3N,N',C-H2L3-H)][SbF6] (M = Ru (17), Os (18)). The phosphano-guanidino complex 7 activates deuterated water in a reversible fashion, resulting in the gradual deuteration of the three cymene methyl protons through sequential C(sp3)-H bond activation. From DFT calculations, a metal-ligand cooperative reversible mechanism that involves the O-H bond activation and the formation of an intermediate methylene cyclohexenyl complex has been proposed. Complexes 5-10 catalyse the hydrogenation of the CC double bond of styrene and a range of acrylates, the CO bond of acetophenone and the CN bond of N-benzylideneaniline and quinoline. The CC double bond of methyl acrylate adds to catalyst 9, affording complex 19 in which a new ligand exhibiting a fac κ3N,N',C coordination mode has been incorporated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.