Abstract

Herein, we report a comprehensive study of CO2 hydroboration catalyzed by Mn pincer complexes. The traditional metal-ligand cooperation (MLC) mechanism based on the H-Mn-N-Bpin pincer complex is not viable due to the competing abstraction of the Bpin group from the H-Mn-N-Bpin complex by NaOtBu. Instead, we propose an ionic mechanism based on the H-Mn-N-Na species with a low energy span (22.5 kcal/mol) and unveil the acceleration effect of bases. The X groups in the H-Mn-N-X catalyst models are further modulated, and the steric hindrance and H→B donor-acceptor interactions of the X group increase the energy barrier of the hydride transfer. The hydrogen bond and electrostatic interactions of the X group can accelerate the hydride transfer to HCOOBpin and HCHO molecules except for the nonpolar CO2 molecule. Based on these discoveries, we designed a pyridine-based Mn pincer catalyst system, which could achieve CO2 hydroboration in low-temperature and base-free conditions through a metal-ligand cooperation mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.