Abstract

The boundary between molecular and metallic gold nanoclusters is of special interest. The difficulty in obtaining atomically precise nanoclusters larger than 2 nm limits the determination of such a boundary. The synthesis and total structural determination of the largest all-alkynyl-protected gold nanocluster (Ph4P)6[Au156(C≡CR)60] (R = 4-CF3C6H4-) (Au156) are reported. It presents an ideal platform for studying the relationship between the structure and the metallic nature. Au156 has a rod shape with the length and width of the kernel being 2.38 and 2.04 nm, respectively. The cluster contains a concentric Au126 core structure (Au46@Au50@Au30) protected by 30 linear RC≡C-Au-C≡CR staple motifs. It is interesting that Au156 displays multiple excitonic peaks in the steady-state absorption spectrum (molecular) and pump-power-dependent excited-state dynamics as revealed in the transient absorption spectrum (metallic), which indicates that Au156 is a critical crossover cluster for the transition from molecular to metallic state. Au156 is the smallest-sized gold nanocluster showing metal-like electron dynamics, and it is recognized that the cluster shape is one of the important factors determining the molecular or metallic nature of a gold nanocluster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.