Abstract

Resin-derived hard carbons have shown great advantages in serving as promising anode materials for sodium-ion batteries due to their flexible microstructure tunability. However, it remains a daunting challenge to rationally regulate the pseudo-graphitic crystallite and defect of hard carbon toward advanced sodium storage performance. Herein, a molecular engineering strategy is demonstrated to modulate the cross-linking degree of phenolic resin and thus optimize the microstructure of hard carbon. Remarkably, the resorcinol endows resin with a moderate cross-linking degree, which can finely tune the pseudo-graphitic structure with enlarged interlayer spacing and restricted surface defects. As a consequence, the optimal hard carbon delivers a notable reversible capacity of 334.3mAhg-1 at 0.02Ag-1, a high initial Coulombic efficiency of 82.1%, superior rate performance of 103.7mAhg-1 at 2Ag-1, and excellent cycling durability over 5000 cycles. Furthermore, kinetic analysis and in situ Raman spectroscopy are performed to reveal the electrochemical advantage and sodium storage mechanism. This study fundamentally sheds light on the molecular design of resin-based hard carbons to advance sodium energy for scale-up applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.