Abstract
The thiophene- and pyrrole-fused heterocyclic compounds have garnered significant interest for their distinctive electron-rich characteristics and notable optoelectronic properties. However, the construction of high-performance systems within this class is of great challenge. Herein, we develop a series of novel dithieno[3,2-b:2′,3′-d] pyrrole (DTP) and tetrathieno[3,2-b:2′,3′-d] pyrrole (TTP) bridged arylamine compounds (DTP-C4, DTP-C12, DTP-C4-Fc, TTP-C4-OMe, TTP-C4, and TTP-C12) with varying carbon chain lengths. The pertinent experimental results reveal that this series of compounds undergo completely reversible multistep redox processes. Notably, TTP-bridged compounds TTP-C4 and TTP-C12 exhibit impressive multistep near-infrared (NIR) absorption alterations with notable color changes and electroluminescent behaviors, which are mainly attributed to the charge transfer transitions from terminal arylamine units to central bridges, as supported by theoretical calculations. Additionally, compound DTP-C4 demonstrates the ability to visually identify gram-positive and gram-negative bacteria. Therefore, this work suggests the promising electroresponsive nature of compounds TTP-C4 and TTP-C12, positioning them as excellent materials for various applications. It also provides a facile approach to constructing high-performance multifunctional luminescent materials, particularly those with strong and long-wavelength NIR absorption capabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.