Abstract

Hydrogel membranes of in-dwelling pH-responsive devices are of interest for the development of biomedical sensors that must measure small changes in pH associated with tissue acidosis. Poly(2-hydroxyethyl methacrylate)-based hydrogels possessing minor amounts of the cationogenic N-(2-aminoethyl) methacrylamide (AEMA) (4 mol%) or a tertiary amine moiety, N,N-(2-dimethylamino)ethyl methacrylamide (DMAEMA) (4 mol%) or AEMA-DMAEMA (2 mol% each) were UV cross-linked with 1 mol% tetra(ethylene glycol) diacrylate (TEGDA) and the degree of hydration, free and bound water distribution, glass transition temperature, elastic modulus, membrane resistance and protein adsorption were studied. Correlation analysis reveals that each of these biotechnical properties is strongly anti-correlated with total hydration (−0.92) and that the bound water content dominates this anti-correlation (~−0.83). However, free water shows a direct, though only weak correlation with these properties (~+0.5). Thus, minor changes in the hydrogel composition (~4 mol%) can significantly influence biomaterials properties and may be useful in tailoring hydrogel properties for application in biosensors and engineered tissue scaffolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.