Abstract
Continuous co-crystallization in a twin-screw granulator is a promising technology. In order to fundamentally optimize the process flow, it is necessary to investigate the kinetics of molecular interactions within the mixture and the effect of these interactions on co-crystal formation. In this study, the processes governing the co-crystallization of ibuprofen and nicotinamide were considered. Density functional theory calculations employing the Hirshfeld partitioning scheme were used to identify donor–acceptor sites on each molecule. A total of twenty-one different molecular interactions was identified (nine of ibuprofen and nicotinamide (resembling co-crystals), three of ibuprofen and itself (resembling the ibuprofen dimer), and nine of nicotinamide and itself (resembling the nicotinamide dimer)). Each interaction was defined as an artificial reversible reaction and the kinetics were calculated using the transition state theory of chemical reactions, where linear and quadratic synchronous transition methods were utilized to identify transition-state structures; the minimum energy path was determined using the nudged elastic band method. A kinetic Monte Carlo framework was used to study the collective/coupled effect of reactions on the progress of the co-crystallization process. it was found that operating at low temperatures (especially lower or very close to the melting temperature of ibuprofen) for longer residency times creates a safe route for maximizing the presence of ibuprofen and nicotinamide co-crystals. If the proposed route is applied, the purity and properties of the produced co-crystal would be significant, especially its desirable availability within the body.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have